Please use this identifier to cite or link to this item: http://repository.kalbis.ac.id/handle/123456789/217
Title: Pengembangan Model Pembelajaran Mesin untuk Klasifikasi Citra Lukisan Menggunakan Self-Organizing Map dengan Library Minisom
Authors: Nanda, Rangga Eka
Prabowo, Yulius Denny
Keywords: bag of visual word
k-means
painting image
scale-invariant feature transform
self-organizing map
Issue Date: 26-Aug-2020
Publisher: Institut Teknologi dan Bisnis Kalbis
Abstract: This research aims to develop a model to recognize painting types of figurative and nonfigurative using self-organizing map (SOM) algorithm. This research used painting images from WikiArt which was formed into figurative and non-figurative types. Methods used in this research implements bag of visual words (BoVW) model to represent image features, SOM algorithm as a classifier, and incremental model as a software development method. Features of an image based on BoVW model formed using scale-invariant feature transform (SIFT) and K-means methods. The BoVW feature representation then classified using SOM which uses rectangular topology and gaussian neighborhood function. The result of this research is an application to recognize painting images with 83.3% accuracy.
URI: http://repository.kalbis.ac.id/handle/123456789/217
Appears in Collections:IF 2020

Files in This Item:
File Description SizeFormat 
A_Cover_2016102661.pdfCover145.4 kBAdobe PDFView/Open
B_Abstrak_2016102661.pdfAbstrak139.08 kBAdobe PDFView/Open
C_Daftar_isi_2016102661.pdfDaftar isi507.85 kBAdobe PDFView/Open
D_Bab1_2016102661.pdfBab 1367.42 kBAdobe PDFView/Open
E_Bab2_2016102661.pdf
  Restricted Access
Bab 21.45 MBAdobe PDFView/Open Request a copy
F_Bab3_2016102661.pdf
  Restricted Access
Bab 3882.08 kBAdobe PDFView/Open Request a copy
G_Bab4_2016102661.pdf
  Restricted Access
Bab 41.18 MBAdobe PDFView/Open Request a copy
H_Bab5_2016102661.pdf
  Restricted Access
Bab 5253.77 kBAdobe PDFView/Open Request a copy
I_Daftar_pustaka_2016102661.pdfDaftar pustaka358.43 kBAdobe PDFView/Open
J_Full_text_2016102661.pdf
  Restricted Access
Full text7.24 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.