Please use this identifier to cite or link to this item: http://repository.kalbis.ac.id/handle/123456789/394
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJayadi, Edsel-
dc.contributor.advisorDirgantara, Harya Bima-
dc.date.accessioned2022-08-16T09:12:09Z-
dc.date.available2022-08-16T09:12:09Z-
dc.date.issued2022-08-12-
dc.identifier.urihttp://repository.kalbis.ac.id/handle/123456789/394-
dc.description.abstractThis study aims to build sentiment analysis application using Naïve Bayes method to analyze public view about an application called PeduliLindungi, and measure it’s accuracy by using twitter dataset. PeduliLindungi is an application developed by the government in order to track and stop Coronavirus Disease (COVID-19). The dataset used in this study is collected by using crawling method with Tweepy. Collected dataset will then go through data pre-processing and labeled by using VADER in order to separate it into positive and negative sentiments. The data will be weighted based on the frequency of its occurrence in all tweets using the TF-IDF method. The weighted data will then be classified using the Naïve Bayes method. This research used the incremental method both in model and software development. The results obtained in this study is a model with an accuracy score of 85% and an average precision, recall, and f1-score of 85%.en_US
dc.language.isootheren_US
dc.publisherInstitut Teknologi dan Bisnis Kalbisen_US
dc.subjectNaïve Bayesen_US
dc.subjectSentiment Analysisen_US
dc.subjectIncrementalen_US
dc.subjectTF-IDFen_US
dc.subjectTwitteren_US
dc.titlePengembangan Aplikasi Analisis Sentimen Aplikasi Pedulilindungi Menggunakan Metode Naïve Bayesen_US
dc.typeThesisen_US
Appears in Collections:IF 2022

Files in This Item:
File Description SizeFormat 
A_Cover_2018103800.pdfCover219.99 kBAdobe PDFView/Open
B_Abstrak__2018103800.pdfAbstrak266.01 kBAdobe PDFView/Open
C_Daftar_isi__2018103800.pdfDaftar isi246.8 kBAdobe PDFView/Open
D_Bab1_2018103800.pdfBab 1219.94 kBAdobe PDFView/Open
E_Bab2_2018103800.pdf
  Restricted Access
Bab 2374.44 kBAdobe PDFView/Open Request a copy
F_Bab3_2018103800.pdf
  Restricted Access
Bab 3929.68 kBAdobe PDFView/Open Request a copy
G_Bab4_2018103800.pdf
  Restricted Access
Bab 4480.04 kBAdobe PDFView/Open Request a copy
H_Bab5_2018103800.pdf
  Restricted Access
Bab 5210.6 kBAdobe PDFView/Open Request a copy
I_Daftar_pustaka_2018103800.pdfDaftar pustaka282.07 kBAdobe PDFView/Open
J_Full_text_2018103800.pdf
  Restricted Access
Full text1.53 MBAdobe PDFView/Open Request a copy
Certificate_of_Approval_2018103800.pdf
  Restricted Access
Certificate of approval97.83 kBAdobe PDFView/Open Request a copy
Plagiasi_skripsi_2018103800.pdf
  Restricted Access
Plagiasi8.67 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.