Please use this identifier to cite or link to this item:
http://repository.kalbis.ac.id/handle/123456789/1073
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gojali, Muhammad Ikhsan | - |
dc.contributor.advisor | Tjiong, Edwin Lesmana | - |
dc.date.accessioned | 2023-07-28T09:52:37Z | - |
dc.date.available | 2023-07-28T09:52:37Z | - |
dc.date.issued | 2023-07-25 | - |
dc.identifier.uri | http://repository.kalbis.ac.id/handle/123456789/1073 | - |
dc.description.abstract | This research aims to create an application that can help supervise smoking activities using a deep learning algorithm, namely YOLOv3. Using 2 methods for development, the incremental for software development life cycle and black box testing. The dataset used image that collected from the internet sites and camera footage depicting of cigarette objects and smoking activities. The dataset was trained and tested using a split test application by separating the data into two datasets, for a separation is 85% for test and 15% for training. The model produces a mAP accuracy rate of 69.54% and averange loss of 0.189, with a cigarette detection percentage rate of 60% to 71% and 40% to 90% for smoking activities. For distances that can be detected in the range of 3 to 4 meters. | en_US |
dc.language.iso | other | en_US |
dc.publisher | Institut Teknologi dan Bisnis Kalbis | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | YOLOv3 | en_US |
dc.subject | mAP | en_US |
dc.subject | Averange Loss | en_US |
dc.subject | Split Test | en_US |
dc.subject | Cigarette and Smoking Activity | en_US |
dc.title | Pengembangan Aplikasi Deteksi Objek Rokok dan Kegiatan Merokok Menggunakan Algoritma YOLOv3 | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | IF 2023 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
A_Cover_2019104781.pdf | Cover | 154.58 kB | Adobe PDF | View/Open |
B_Abstrak_2019104781.pdf | Abstrak | 136.44 kB | Adobe PDF | View/Open |
C_Daftar_isi_2019104781.pdf | Daftar isi | 171.85 kB | Adobe PDF | View/Open |
D_Bab1_2019104781.pdf | Bab 1 | 245.79 kB | Adobe PDF | View/Open |
E_Bab2_2019104781.pdf Restricted Access | Bab 2 | 490.03 kB | Adobe PDF | View/Open Request a copy |
F_Bab3_2019104781.pdf Restricted Access | Bab 3 | 1.74 MB | Adobe PDF | View/Open Request a copy |
G_Bab4_2019104781.pdf Restricted Access | Bab 4 | 682.33 kB | Adobe PDF | View/Open Request a copy |
H_Bab5_2019104781.pdf Restricted Access | Bab 5 | 138.52 kB | Adobe PDF | View/Open Request a copy |
I_Daftar_pustaka_2019104781.pdf | Daftar pustaka | 282.14 kB | Adobe PDF | View/Open |
J_Full_text_2019104781.pdf Restricted Access | Full text | 2.86 MB | Adobe PDF | View/Open Request a copy |
Certificate_of_approval_2019104781.pdf Restricted Access | Certificate of approval | 101.01 kB | Adobe PDF | View/Open Request a copy |
Plagiasi_2019104781.pdf Restricted Access | Plagiasi | 18.7 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.