Please use this identifier to cite or link to this item: http://repository.kalbis.ac.id/handle/123456789/1073
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGojali, Muhammad Ikhsan-
dc.contributor.advisorTjiong, Edwin Lesmana-
dc.date.accessioned2023-07-28T09:52:37Z-
dc.date.available2023-07-28T09:52:37Z-
dc.date.issued2023-07-25-
dc.identifier.urihttp://repository.kalbis.ac.id/handle/123456789/1073-
dc.description.abstractThis research aims to create an application that can help supervise smoking activities using a deep learning algorithm, namely YOLOv3. Using 2 methods for development, the incremental for software development life cycle and black box testing. The dataset used image that collected from the internet sites and camera footage depicting of cigarette objects and smoking activities. The dataset was trained and tested using a split test application by separating the data into two datasets, for a separation is 85% for test and 15% for training. The model produces a mAP accuracy rate of 69.54% and averange loss of 0.189, with a cigarette detection percentage rate of 60% to 71% and 40% to 90% for smoking activities. For distances that can be detected in the range of 3 to 4 meters.en_US
dc.language.isootheren_US
dc.publisherInstitut Teknologi dan Bisnis Kalbisen_US
dc.subjectDeep Learningen_US
dc.subjectYOLOv3en_US
dc.subjectmAPen_US
dc.subjectAverange Lossen_US
dc.subjectSplit Testen_US
dc.subjectCigarette and Smoking Activityen_US
dc.titlePengembangan Aplikasi Deteksi Objek Rokok dan Kegiatan Merokok Menggunakan Algoritma YOLOv3en_US
dc.typeThesisen_US
Appears in Collections:IF 2023

Files in This Item:
File Description SizeFormat 
A_Cover_2019104781.pdfCover154.58 kBAdobe PDFView/Open
B_Abstrak_2019104781.pdfAbstrak136.44 kBAdobe PDFView/Open
C_Daftar_isi_2019104781.pdfDaftar isi171.85 kBAdobe PDFView/Open
D_Bab1_2019104781.pdfBab 1245.79 kBAdobe PDFView/Open
E_Bab2_2019104781.pdf
  Restricted Access
Bab 2490.03 kBAdobe PDFView/Open Request a copy
F_Bab3_2019104781.pdf
  Restricted Access
Bab 31.74 MBAdobe PDFView/Open Request a copy
G_Bab4_2019104781.pdf
  Restricted Access
Bab 4682.33 kBAdobe PDFView/Open Request a copy
H_Bab5_2019104781.pdf
  Restricted Access
Bab 5138.52 kBAdobe PDFView/Open Request a copy
I_Daftar_pustaka_2019104781.pdfDaftar pustaka282.14 kBAdobe PDFView/Open
J_Full_text_2019104781.pdf
  Restricted Access
Full text2.86 MBAdobe PDFView/Open Request a copy
Certificate_of_approval_2019104781.pdf
  Restricted Access
Certificate of approval101.01 kBAdobe PDFView/Open Request a copy
Plagiasi_2019104781.pdf
  Restricted Access
Plagiasi18.7 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.