Please use this identifier to cite or link to this item: http://repository.kalbis.ac.id/handle/123456789/220
Title: Pengembangan Model Pembelajaran Mesin Prediksi Kematangan Buah Pisang Berdasarkan Citra Digital
Authors: Samantha, Theresia
Marselino, Tedi Lesmana
Keywords: Machine Learning
Computer Vision
KNN
K-Means
Issue Date: 14-Aug-2020
Publisher: Institut Teknologi dan Bisnis Kalbis
Abstract: This study aims to develop machine learning to detect banana ripeness based on the skin color. In addition to the color of the skin, also carried out a comparison between the color of the banana with black spots on the banana. The color value used is RGB Color values are taken by using k – means to take the most dominant color value on the banana. After the data is obtained it will be learned using k - nearest neighbor. So as to produce a machine learning to get accuracy for this detection compared with 80% of the trained data and 20% of the tested data. So that the accuracy of the data that is only based on color is compared with the result value is 95.74% with the data using color data and the percentage of the color dominance value is 51.06%.
URI: http://repository.kalbis.ac.id/handle/123456789/220
Appears in Collections:IF 2020

Files in This Item:
File Description SizeFormat 
A_Cover_2016102410.pdfCover456.98 kBAdobe PDFView/Open
B_Abstrak_2016102410.pdfAbstrak540.16 kBAdobe PDFView/Open
C_Daftar_isi_2016102410.pdfDaftar isi305.64 kBAdobe PDFView/Open
D_Bab1_2016102410.pdfBab 1539.5 kBAdobe PDFView/Open
E_Bab2_2016102410.pdf
  Restricted Access
Bab 21.05 MBAdobe PDFView/Open Request a copy
F_Bab3_2016102410.pdf
  Restricted Access
Bab 31.21 MBAdobe PDFView/Open Request a copy
G_Bab4_2016102410.pdf
  Restricted Access
Bab 4596.6 kBAdobe PDFView/Open Request a copy
H_Bab5_2016102410_8.pdf
  Restricted Access
Bab 5557.55 kBAdobe PDFView/Open Request a copy
I_Daftar_pustaka_2016102410.pdfDaftar pustaka512.13 kBAdobe PDFView/Open
J_Full_text_2016102410.pdf
  Restricted Access
Full text1.94 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.