Please use this identifier to cite or link to this item: http://repository.kalbis.ac.id/handle/123456789/411
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerry, Ferry-
dc.contributor.advisorKurniawati, Yulia Ery-
dc.date.accessioned2022-08-22T01:15:14Z-
dc.date.available2022-08-22T01:15:14Z-
dc.date.issued2022-08-19-
dc.identifier.urihttp://repository.kalbis.ac.id/handle/123456789/411-
dc.description.abstractThis study aims to develop an application that implement deep learning with the Convolutional Neural Network (CNN) for classifying the sound of the kalimba and not kalimba. The application development in this research used the incremental method. In increment 1, the dataset will be cut into ten seconds and then converted into a mel-spectrogram image with the help of librosa. The test evaluation results from the experiments carried out were 98.33% accuracy, 0.0394 loss and 98% F1 score with 150 epochs of training. In increment 2, the model is implemented as a GUI with the help of TKinter. This study shows that CNN can be used to classify the sound of the kalimba.en_US
dc.language.isootheren_US
dc.publisherInstitut Teknologi dan Bisnis Kalbisen_US
dc.subjectKalimba Musical Instrumenten_US
dc.subjectDeep Learningen_US
dc.subjectCNNen_US
dc.subjectMel-spectogramen_US
dc.subjectClassificationen_US
dc.subjectIncrementalen_US
dc.titlePengembangan Aplikasi Klasifikasi Suara Alat Musik Kalimbaen_US
dc.typeThesisen_US
Appears in Collections:IF 2022

Files in This Item:
File Description SizeFormat 
A_Cover_2018103791.pdfCover229.01 kBAdobe PDFView/Open
B_Abstrak_2018103791.pdfAbstrak208.42 kBAdobe PDFView/Open
C_Daftar_Isi_2018103791.pdfDaftar isi572.76 kBAdobe PDFView/Open
D_Bab1_2018103791.pdfBab 1510.26 kBAdobe PDFView/Open
E_Bab2_2018103791.pdf
  Restricted Access
Bab 2862.89 kBAdobe PDFView/Open Request a copy
F_Bab3_2018103791.pdf
  Restricted Access
Bab 3650.69 kBAdobe PDFView/Open Request a copy
G_Bab4_2018103791.pdf
  Restricted Access
Bab 4802.06 kBAdobe PDFView/Open Request a copy
H_Bab5_2018103791.pdf
  Restricted Access
Bab 5385.08 kBAdobe PDFView/Open Request a copy
I_Daftar_Pustaka_2018103791.pdfDaftar pustaka435.5 kBAdobe PDFView/Open
J_FULL_TEXT_2018103791.pdf
  Restricted Access
Full text2.33 MBAdobe PDFView/Open Request a copy
Certificate_of_Approval_2018103791.pdf
  Restricted Access
Certificate of approval97.81 kBAdobe PDFView/Open Request a copy
Plagiasi_Skripsi_2018103791.pdf
  Restricted Access
Plagiasi9.15 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.